All publications from Erik Tonni
Krylov complexity of modular Hamiltonian evolution
Caputa P., Magan J.M., Patramanis D., Tonni E.
We investigate the complexity of states and operators evolved with the modular Hamiltonian by using the Krylov basis. In the first part, we formulate the problem for states and analyze different examples, including quantum mechanics, two-dimensional conformal field theories and random modular Hamiltonians, focusing on relations with the entanglement spectrum. We find that the modular Lanczos spectrum provides a different approach to quantum entanglement, opening new avenues in many-body systems and holography. In the second part, we focus on the modular evolution of operators and states excited by local operators in two-dimensional conformal field theories. We find that, at late modular time, the spread complexity is universally governed by the modular Lyapunov exponent λLmod=2π and is proportional to the local temperature of the modular Hamiltonian. Our analysis provides explicit examples where entanglement entropy is indeed not enough; however the entanglement spectrum is, and encodes the same information as complexity.
Sequences of resource monotones from modular Hamiltonian polynomials
Arias R., De Boer J., Di Giulio G., Keski-Vakkuri E., Tonni E.
We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of "Landauer inequalities"for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.
Probing RG flows, symmetry resolution and quench dynamics through the capacity of entanglement
Arias R., Di Giulio G., Keski-Vakkuri E., Tonni E.
We compare the capacity of entanglement with the entanglement entropy by considering various aspects of these quantities for free bosonic and fermionic models in one spatial dimension, both in the continuum and on the lattice. Substantial differences are observed in the subleading terms of these entanglement quantifiers when the subsystem is made by two disjoint intervals, in the massive scalar field and in the fermionic chain. We define c-functions based on the capacity of entanglement similar to the one based on the entanglement entropy, showing through a numerical analysis that they display a monotonic behaviour under the renormalisation group flow generated by the mass. The capacity of entanglement and its related quantities are employed to explore the symmetry resolution. The temporal evolutions of the capacity of entanglement and of the corresponding contour function after a global quench are also discussed.
Entanglement and negativity Hamiltonians for the massless Dirac field on the half line
Rottoli F., Murciano S., Tonni E., Calabrese P.
We study the ground-state entanglement Hamiltonian of several disjoint intervals for the massless Dirac fermion on the half-line. Its structure consists of a local part and a bi-local term that couples each point to another one in each other interval. The bi-local operator can be either diagonal or mixed in the fermionic chiralities and it is sensitive to the boundary conditions. The knowledge of such entanglement Hamiltonian is the starting point to evaluate the negativity Hamiltonian, i.e. the logarithm of the partially transposed reduced density matrix, which is an operatorial characterisation of entanglement of subsystems in mixed states. We find that the negativity Hamiltonian inherits the structure of the corresponding entanglement Hamiltonian. We finally show how the continuum expressions for both these operators can be recovered from exact numerical computations in free-fermion chains.
Modular conjugations in 2D conformal field theory and holographic bit threads
Mintchev M., Tonni E.
We study the geometric action of some modular conjugations in two dimensional (2D) conformal field theories. We investigate the bipartition given by an interval when the system is in the ground state, either on the line or on the circle, and in the thermal Gibbs state on the line. We find that the restriction of the corresponding inversion maps to a spatial slice is obtained also in the gauge/gravity correspondence through the geodesic bit threads in a constant time slice of the dual static asymptotically AdS background. For a conformal field theory in the thermal state on the line, the modular conjugation suggests the occurrence of a second world which can be related through the geodesic bit threads to the horizon of the BTZ black brane background. An inversion map is constructed also for the massless Dirac fermion in the ground state and on the line bipartite by the union of two disjoint intervals.
Entanglement entropies of an interval in the free Schrödinger field theory on the half line
Mintchev M., Pontello D., Tonni E.
We study the entanglement entropies of an interval adjacent to the boundary of the half line for the free fermionic spinless Schrödinger field theory at finite density and zero temperature, with either Neumann or Dirichlet boundary conditions. They are finite functions of the dimensionless parameter given by the product of the Fermi momentum and the length of the interval. The entanglement entropy displays an oscillatory behaviour, differently from the case of the interval on the whole line. This behaviour is related to the Friedel oscillations of the mean particle density on the half line at the entangling point. We find analytic expressions for the expansions of the entanglement entropies in the regimes of small and large values of the dimensionless parameter. They display a remarkable agreement with the curves obtained numerically. The analysis is extended to a family of free fermionic Lifshitz models labelled by their integer Lifshitz exponent, whose parity determines the properties of the entanglement entropies. The cumulants of the local charge operator and the Schatten norms of the underlying kernels are also explored.
Local and non-local properties of the entanglement Hamiltonian for two disjoint intervals
Eisler V., Tonni E., Peschel I.
We consider free-fermion chains in the ground state and the entanglement Hamiltonian for a subsystem consisting of two separated intervals. In this case, one has a peculiar long-range hopping between the intervals in addition to the well-known and dominant short-range hopping. We show how the continuum expressions can be recovered from the lattice results for general filling and arbitrary intervals. We also discuss the closely related case of a single interval located at a certain distance from the end of a semi-infinite chain and the continuum limit for this problem. Finally, we show that for the double interval in the continuum a commuting operator exists which can be used to find the eigenstates.
Entanglement entropies of an interval in the free Schrödinger field theory at finite density
Mintchev M., Pontello D., Sartori A., Tonni E.
We study the entanglement entropies of an interval on the infinite line in the free fermionic spinless Schrödinger field theory at finite density and zero temperature, which is a non-relativistic model with Lifshitz exponent z = 2. We prove that the entanglement entropies are finite functions of one dimensionless parameter proportional to the area of a rectangular region in the phase space determined by the Fermi momentum and the length of the interval. The entanglement entropy is a monotonically increasing function. By employing the properties of the prolate spheroidal wave functions of order zero or the asymptotic expansions of the tau function of the sine kernel, we find analytic expressions for the expansions of the entanglement entropies in the asymptotic regimes of small and large area of the rectangular region in the phase space. These expansions lead to prove that the analogue of the relativistic entropic C function is not monotonous. Extending our analyses to a class of free fermionic Lifshitz models labelled by their integer dynamical exponent z, we find that the parity of this exponent determines the properties of the bipartite entanglement for an interval on the line.
On the continuum limit of the entanglement Hamiltonian of a sphere for the free massless scalar field
Javerzat N., Tonni E.
We study the continuum limit of the entanglement Hamiltonian of a sphere for the massless scalar field in its ground state by employing the lattice model defined through the discretisation of the radial direction. In two and three spatial dimensions and for small values of the total angular momentum, we find numerical results in agreement with the corresponding ones derived from the entanglement Hamiltonian predicted by conformal field theory. When the mass parameter in the lattice model is large enough, the dominant contributions come from the on-site and the nearest-neighbour terms, whose weight functions are straight lines.
Entanglement of Two Disjoint Intervals in Conformal Field Theory and the 2D Coulomb Gas on a Lattice
Grava T., Kels A.P., Tonni E.
In the conformal field theories given by the Ising and Dirac models, when the system is in the ground state, the moments of the reduced density matrix of two disjoint intervals and of its partial transpose have been written as partition functions on higher genus Riemann surfaces with symmetry. We show that these partition functions can be expressed as the grand canonical partition functions of the two-dimensional two component classical Coulomb gas on certain circular lattices at specific values of the coupling constant.
Subsystem complexity after a local quantum quench
Di Giulio G., Tonni E.
We study the temporal evolution of the circuit complexity after the local quench where two harmonic chains are suddenly joined, choosing the initial state as the reference state. We discuss numerical results for the complexity for the entire chain and the subsystem complexity for a block of consecutive sites, obtained by exploiting the Fisher information geometry of the covariance matrices. The qualitative behaviour of the temporal evolutions of the subsystem complexity depends on whether the joining point is inside the subsystem. The revivals and a logarithmic growth observed during these temporal evolutions are discussed. When the joining point is outside the subsystem, the temporal evolutions of the subsystem complexity and of the corresponding entanglement entropy are qualitatively similar.
Subsystem complexity after a global quantum quench
Di Giulio G., Tonni E.
We study the temporal evolution of the circuit complexity for a subsystem in harmonic lattices after a global quantum quench of the mass parameter, choosing the initial reduced density matrix as the reference state. Upper and lower bounds are derived for the temporal evolution of the complexity for the entire system. The subsystem complexity is evaluated by employing the Fisher information geometry for the covariance matrices. We discuss numerical results for the temporal evolutions of the subsystem complexity for a block of consecutive sites in harmonic chains with either periodic or Dirichlet boundary conditions, comparing them with the temporal evolutions of the entanglement entropy. For infinite harmonic chains, the asymptotic value of the subsystem complexity is studied through the generalised Gibbs ensemble.
Modular Hamiltonians for the massless Dirac field in the presence of a defect
Mintchev M., Tonni E.
We study the massless Dirac field on the line in the presence of a point-like defect characterised by a unitary scattering matrix, that allows both reflection and transmission. Considering this system in its ground state, we derive the modular Hamiltonians of the subregion given by the union of two disjoint equal intervals at the same distance from the defect. The absence of energy dissipation at the defect implies the existence of two phases, where either the vector or the axial symmetry is preserved. Besides a local term, the densities of the modular Hamiltonians contain also a sum of scattering dependent bi-local terms, which involve two conjugate points generated by the reflection and the transmission. The modular flows of each component of the Dirac field mix the trajectory passing through a given initial point with the ones passing through its reflected and transmitted conjugate points. We derive the two-point correlation functions along the modular flows in both phases and show that they satisfy the Kubo-Martin-Schwinger condition. The entanglement entropies are also computed, finding that they do not depend on the scattering matrix.
Modular Hamiltonians for the massless Dirac field in the presence of a boundary
Mintchev M., Tonni E.
We study the modular Hamiltonians of an interval for the massless Dirac fermion on the half-line. The most general boundary conditions ensuring the global energy conservation lead to consider two phases, where either the vector or the axial symmetry is preserved. In these two phases we derive the corresponding modular Hamiltonian in explicit form. Its density involves a bi-local term localised in two points of the interval, one conjugate to the other. The associated modular flows are also established. Depending on the phase, they mix fields with different chirality or charge that follow different modular trajectories. Accordingly, the modular flow preserves either the vector or the axial symmetry. We compute the two-point correlation functions along the modular flow and show that they satisfy the Kubo-Martin-Schwinger condition in both phases. The entanglement entropies are also derived.
Complexity of mixed Gaussian states from Fisher information geometry
Di Giulio G., Tonni E.
We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices.
Entanglement Hamiltonians for non-critical quantum chains
Eisler V., Di Giulio G., Tonni E., Peschel I.
We study the entanglement Hamiltonian for finite intervals in infinite quantum chains for two different free-particle systems: coupled harmonic oscillators and fermionic hopping models with dimerization. Working in the ground state, the entanglement Hamiltonian describes again free bosons or fermions and is obtained from the correlation functions via high-precision numerics for up to several hundred sites. Far away from criticality, the dominant on-site and nearest-neighbour terms have triangular profiles that can be understood from the analytical results for a half-infinite interval. Near criticality, the longer-range couplings, although small, lead to a more complex picture. A comparison between the exact spectra and entanglement entropies and those resulting from the dominant terms in the Hamiltonian is also reported.
Operator content of entanglement spectra in the transverse field Ising chain after global quenches
Surace J., Tagliacozzo L., Tonni E.
We consider the time evolution of the gaps of the entanglement spectrum for a block of consecutive sites in finite transverse field Ising chains after sudden quenches of the magnetic field. We provide numerical evidence that, whenever we quench at or across the quantum critical point, the time evolution of the ratios of these gaps allows us to obtain universal information. They encode the low-lying gaps of the conformal spectrum of the Ising boundary conformal field theory describing the spatial bipartition within the imaginary time path integral approach to global quenches at the quantum critical point.
On entanglement Hamiltonians of an interval in massless harmonic chains
Di Giulio G., Tonni E.
We study the continuum limit of the entanglement Hamiltonians of a block of consecutive sites in massless harmonic chains. This block is either in the chain on the infinite line or at the beginning of a chain on the semi-infinite line with Dirichlet boundary conditions imposed at its origin. The entanglement Hamiltonians of the interval predicted by conformal field theory (CFT) for the massless scalar field are obtained in the continuum limit. We also study the corresponding entanglement spectra, and the numerical results for the ratios of the gaps are compatible with the operator content of the boundary CFT of a massless scalar field with Neumann boundary conditions imposed along the boundaries introduced around the entangling points by the regularisation procedure.
On shape dependence of holographic entanglement entropy in AdS4/CFT3 with Lifshitz scaling and hyperscaling violation
Cavini G., Seminara D., Sisti J., Tonni E.
We study the divergent terms and the finite term in the expansion of the holographic entanglement entropy as the ultraviolet cutoff vanishes for smooth spatial regions having arbitrary shape, when the gravitational background is a four dimensional asymptotically Lifshitz spacetime with hyperscaling violation, in a certain range of the hyperscaling parameter. Both static and time dependent backgrounds are considered. For the coefficients of the divergent terms and for the finite term, analytic expressions valid for any smooth entangling curve are obtained. The analytic results for the finite terms are checked through a numerical analysis focussed on disks and ellipses.
Complexity in the presence of a boundary
Braccia P., Cotrone A.L., Tonni E.
The effects of a boundary on the circuit complexity are studied in two dimensional theories. The analysis is performed in the holographic realization of a conformal field theory with a boundary by employing different proposals for the dual of the complexity, including the “Complexity = Volume” (CV) and “Complexity = Action” (CA) prescriptions, and in the harmonic chain with Dirichlet boundary conditions. In all the cases considered except for CA, the boundary introduces a subleading logarithmic divergence in the expansion of the complexity as the UV cutoff vanishes. Holographic subregion complexity is also explored in the CV case, finding that it can change discontinuously under continuous variations of the configuration of the subregion.

End of content

No more pages to load