All publications from Marcello Dalmonte
Simulating lattice gauge theories within quantum technologies
Bañuls M.C., Blatt R., Catani J., Celi A., Cirac J.I., Dalmonte M., Fallani L., Jansen K., Lewenstein M., Montangero S., Muschik C.A., Reznik B., Rico E., Tagliacozzo L., Van Acoleyen K., Verstraete F., Wiese U.J., Wingate M., Zakrzewski J., Zoller P.
Abstract: Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed. Graphical abstract: [Figure not available: see fulltext.].
Measurement-induced criticality in (2+1) -dimensional hybrid quantum circuits
Turkeshi X., Fazio R., Dalmonte M.
We investigate the dynamics of two-dimensional quantum spin systems under the combined effect of random unitary gates and local projective measurements. When considering steady states, a measurement-induced transition occurs between two distinct dynamical phases, one characterized by a volume-law scaling of entanglement entropy, the other by an area law. Employing stabilizer states and Clifford random unitary gates, we numerically investigate square lattices of linear dimension up to L=48 for two distinct measurement protocols. For both protocols, we observe a transition point where the dominant contribution in the entanglement entropy displays multiplicative logarithmic violations to the area law. We obtain estimates of the correlation length critical exponent at the percent level; these estimates suggest universal behavior and are incompatible with the universality class of 3D percolation.
Real time dynamics and confinement in the Znschwinger-weyl lattice model for 1+1 QED
Magnifico G., Dalmonte M., Facchi P., Pascazio S., Pepe F.V., Ercolessi E.
We study the out-of-equilibrium properties of 1 + 1 dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian Zngauge group. We look at two relevant phenomena: first, we analyze the stability of the Dirac vacuum with respect to particle/antiparticle pair production, both spontaneous and induced by an external electric field; then, we examine the string breaking mechanism. We observe a strong effect of confinement, which acts by suppressing both spontaneous pair production and string breaking into quark/antiquark pairs, indicating that the system dynamics displays a number of out-of-equilibrium features.
Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators
Surace F.M., Mazza P.P., Giudici G., Lerose A., Gambassi A., Dalmonte M.
Gauge theories are the cornerstone of our understanding of fundamental interactions among elementary particles. Their properties are often probed in dynamical experiments, such as those performed at ion colliders and high-intensity laser facilities. Describing the evolution of these strongly coupled systems is a formidable challenge for classical computers and represents one of the key open quests for quantum simulation approaches to particle physics phenomena. In this work, we show how recent experiments done on Rydberg atom chains naturally realize the real-time dynamics of a lattice gauge theory at system sizes at the boundary of classical computational methods. We prove that the constrained Hamiltonian dynamics induced by strong Rydberg interactions maps exactly onto the one of a U(1) lattice gauge theory. Building on this correspondence, we show that the recently observed anomalously slow dynamics corresponds to a string-inversion mechanism, reminiscent of the string breaking typically observed in gauge theories. This underlies the generality of this slow dynamics, which we illustrate in the context of one-dimensional quantum electrodynamics on the lattice. Within the same platform, we propose a set of experiments that generically show long-lived oscillations, including the evolution of particle-antiparticle pairs, and discuss how a tunable topological angle can be realized, further affecting the dynamics following a quench. Our work shows that the state of the art for quantum simulation of lattice gauge theories is at 51 qubits and connects the recently observed slow dynamics in atomic systems to archetypal phenomena in particle physics.
Nonequilibrium scenarios in cluster-forming quantum lattice models
Angelone A., Ying T., Mezzacapo F., Masella G., Dalmonte M., Pupillo G.
We investigate the out-of-equilibrium physics of monodisperse bosonic ensembles on a square lattice. The effective Hamiltonian description of these systems is given in terms of an extended Hubbard model with cluster-forming interactions relevant to experimental realizations with cold Rydberg-dressed atoms. The ground state of the model, recently investigated in [Phys. Rev. Lett. 123, 045301 (2019)10.1103/PhysRevLett.123.045301], features, aside from a superfluid and a stripe crystalline phase occurring at small and large interaction strength V, respectively, a rare first-order transition between an isotropic and an anisotropic stripe supersolid at intermediate V. By means of quantum Monte Carlo calculations we show that the equilibrium crystal may be turned into a glass by simulated temperature quenches and that out-of-equilibrium isotropic (super)solid states may emerge also when their equilibrium counterparts are anisotropic. These out-of-equilibrium states are of experimental interest, their excess energy with respect to the ground state being within the energy window typically accessed in cold atom experiments. We find, after quenching, no evidence of coexistence between superfluid and glassy behavior. Such an absence of superglassiness is qualitatively explained.
Lattice Bisognano-Wichmann modular Hamiltonian in critical quantum spin chains
Zhang J., Calabrese P., Dalmonte M., Rajabpour M.A.
We carry out a comprehensive comparison between the exact modular Hamiltonian and the lattice version of the Bisognano-Wichmann (BW) one in one-dimensional critical quantum spin chains. As a warm-up, we first illustrate how the trace distance provides a more informative mean of comparison between reduced density matrices when compared to any other Schatten n-distance, normalized or not. In particular, as noticed in earlier works, it provides a way to bound other correlation functions in a precise manner, i.e., providing both lower and upper bounds. Additionally, we show that two close reduced density matrices, i.e. with zero trace distance for large sizes, can have very different modular Hamiltonians. This means that, in terms of describing how two states are close to each other, it is more informative to compare their reduced density matrices rather than the corresponding modular Hamiltonians. After setting this framework, we consider the ground states for infinite and periodic XX spin chain and critical Ising chain. We provide robust numerical evidence that the trace distance between the lattice BW reduced density matrix and the exact one goes to zero as `-2 for large length of the interval `. This provides strong constraints on the difference between the corresponding entanglement entropies and correlation functions. Our results indicate that discretized BW reduced density matrices reproduce exact entanglement entropies and correlation functions of local operators in the limit of large subsystem sizes. Finally, we show that the BW reduced density matrices fall short of reproducing the exact behavior of the logarithmic emptiness formation probability in the ground state of the XX spin chain.
Parent hamiltonian reconstruction of jastrow-gutzwiller wavefunctions
Turkeshi X., Dalmonte M.
Variational wave functions have been a successful tool to investigate the properties of quantum spin liquids. Finding their parent Hamiltonians is of primary interest for the experimental realization of these strongly correlated phases, and for gathering additional insights on their stability. In this work, we systematically reconstruct approximate spin-chain parent Hamiltonians for Jastrow-Gutzwiller wave functions, which share several features with quantum spin liquid wave functions in two dimensions. Firstly, we determine the different phases encoded in the parameter space through their correlation functions and entanglement properties. Secondly, we apply a recently proposed entanglement-guided method to reconstruct parent Hamiltonians to these states, which constrains the search to operators describing relativistic low-energy field theories - as expected for deconfined phases of gauge theories relevant to quantum spin liquids. The quality of the results is discussed using different quantities and comparing to exactly known parent Hamiltonians at specific points in parameter space. Our findings provide guiding principles for experimental Hamiltonian engineering of this class of states.
Entanglement topological invariants for one-dimensional topological superconductors
Fromholz P., Magnifico G., Vitale V., Mendes-Santos T., Dalmonte M.
Entanglement provides characterizing features of true topological order in two-dimensional systems. We show how entanglement of disconnected partitions defines topological invariants for one-dimensional topological superconductors. These order parameters quantitatively capture the entanglement that is possible to distill from the ground-state manifold and are thus quantized to 0 or log2. Their robust quantization property is inferred from the underlying lattice gauge theory description of topological superconductors and is corroborated via exact solutions and numerical simulations. Transitions between topologically trivial and nontrivial phases are accompanied by scaling behavior, a hallmark of genuine order parameters, captured by entanglement critical exponents. These order parameters are experimentally measurable utilizing state-of-the-art techniques.
Homogeneous Floquet time crystal protected by gauge invariance
Russomanno A., Notarnicola S., Surace F.M., Fazio R., Dalmonte M., Heyl M.
We show that homogeneous lattice gauge theories can realize nonequilibrium quantum phases with long-range spatiotemporal order protected by gauge invariance instead of disorder. We study a kicked Z2-Higgs gauge theory and find that it breaks the discrete temporal symmetry by a period doubling. In a limit solvable by Jordan-Wigner analysis we extensively study the time-crystal properties for large systems and further find that the spatiotemporal order is robust under the addition of a solvability-breaking perturbation preserving the Z2 gauge symmetry. The protecting mechanism for the nonequilibrium order relies on the Hilbert space structure of lattice gauge theories, so that our results can be directly extended to other models with discrete gauge symmetries.
Measuring von Neumann entanglement entropies without wave functions
Mendes-Santos T., Giudici G., Fazio R., Dalmonte M.
We present a method to measure the von Neumann entanglement entropy of ground states of quantum many-body systems which does not require access to the system wave function. The technique is based on a direct thermodynamic study of lattice entanglement Hamiltonians - recently proposed in the paper [Dalmonte et al 2018 Nat. Phys. 14 827] via field theoretical insights - and can be performed by quantum Monte Carlo methods. We benchmark our technique on critical quantum spin chains, and apply it to several two-dimensional quantum magnets, where we are able to unambiguously determine the onset of area law in the entanglement entropy, the number of Goldstone bosons, and to check a recent conjecture on geometric entanglement contribution at critical points described by strongly coupled field theories. The protocol can also be adapted to measure entanglement in experiments via quantum quenches.
Entanglement Hamiltonian of quantum critical chains and conformal field theories
Mendes-Santos T., Giudici G., Dalmonte M., Rajabpour M.A.
We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW ansatz by both comparing the BW Rényi entropy to the exact results and investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including integrable models such as the transverse field Ising, three-state Potts and XXZ chains, and the nonintegrable bilinear-biquadratic model. We show that the Rényi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Rényi entropies also faithfully capture the corrections to the conformal field theory scaling associated with the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW ansatz also can be employed to predict properties of the eigenvectors of the reduced density matrices and is thus potentially applicable to other entanglement-related quantities such as negativity.
String tension and robustness of confinement properties in the Schwinger-Thirring model
Barros J.C.P., Dalmonte M., Trombettoni A.
Confinement properties of the 1+1 Schwinger model can be studied by computing the string tension between two charges. It is finite (vanishing) if the fermions are massive (massless), corresponding to the occurrence of confinement (screening). Motivated by the possibility of experimentally simulating the Schwinger model, we investigate here the robustness of its screened and confined phases. First, we analyze the effect of nearest-neighbor density-density interaction terms, which - in the absence of the gauge fields - give rise to the Thirring model. The resulting Schwinger-Thirring model (very often also referred to as the gauged Thirring model) is studied, also in presence of a topological θ-term, showing that the massless (massive) model remains screened (confined) and that there is deconfinement only for θ=±π in the massive case. Estimates of the parameters of the Schwinger-Thirring model are provided with a discussion of a possible experimental setup for its realization with ultracold atoms. The possibility that the gauge fields live in higher dimensions while the fermions remain in 1+1 is also considered. One may refer to this model as the pseudo-Schwinger-Thirring model. It is shown that the screening of external charges occurs for 2+1 and 3+1 gauge fields, exactly as it occurs in 1+1 dimensions, with a radical change of the long distance interaction induced by the gauge fields. The massive (massless) model continues to exhibit confinement (screening), signaling that it is the dimensionality of the matter fields, and not of the gauge fields, to determine confinement properties. A computation for the string tension is presented in perturbation theory. Our conclusion is that 1+1 models exhibiting confinement or screening - massless or massive, in the presence of a topological term or not - retain their main properties when the Thirring interaction is added or the gauge fields live in a higher dimension.
Topological Devil's staircase in atomic two-leg ladders
Barbarino S., Rossini D., Rizzi M., Fazio R., Santoro G.E., Dalmonte M.
We show that a hierarchy of topological phases in one dimension - a topological Devil's staircase - can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek-Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to the non-interacting limit, these topological density waves do not follow the bulk-edge correspondence, as their edge modes are gapped. We then discuss how these results are immediately applicable to models in the AIII class, and to crystalline topological insulators protected by inversion symmetry. Our findings are immediately relevant to cold atom experiments with alkaline-earth atoms in optical lattices, where the band structure properties we exploit have been recently realized.
Entanglement-Guided Search for Parent Hamiltonians
Turkeshi X., Mendes-Santos T., Giudici G., Dalmonte M.
We introduce a method for the search of parent Hamiltonians of input wave functions based on the structure of their reduced density matrix. The two key elements of our recipe are an ansatz on the relation between the reduced density matrix and parent Hamiltonian that is exact at the field theory level, and a minimization procedure on the space of relative entropies, which is particularly convenient due to its convexity. As examples, we show how our method correctly reconstructs the parent Hamiltonian correspondent to several nontrivial ground state wave functions, including conformal and symmetry-protected-topological phases, and quantum critical points of two-dimensional antiferromagnets described by strongly coupled field theories. Our results show the entanglement structure of ground state wave functions considerably simplifies the search for parent Hamiltonians.
Diagnosing Potts criticality and two-stage melting in one-dimensional hard-core boson models
Giudici G., Angelone A., Magnifico G., Zeng Z., Giudice G., Mendes-Santos T., Dalmonte M.
We investigate a model of hard-core bosons with infinitely repulsive nearest- and next-nearest-neighbor interactions in one dimension, introduced by Fendley, Sengupta, and Sachdev [Phys. Rev. B 69, 075106 (2004)PRBMDO1098-012110.1103/PhysRevB.69.075106]. Using a combination of exact diagonalization, tensor network, and quantum Monte Carlo simulations, we show how an intermediate incommensurate phase separates a crystalline and a disordered phase. We base our analysis on a variety of diagnostics, including entanglement measures, fidelity susceptibility, correlation functions, and spectral properties. According to theoretical expectations, the disordered-to-incommensurate-phase transition point is compatible with Berezinskii-Kosterlitz-Thouless universal behavior. The second transition is instead nonrelativistic, with dynamical critical exponent z>1. For the sake of comparison, we illustrate how some of the techniques applied here work at the Potts critical point present in the phase diagram of the model for finite next-nearest-neighbor repulsion. This latter application also allows us to quantitatively estimate which system sizes are needed to match the conformal field theory spectra with experiments performing level spectroscopy.
Floquet time crystals in clock models
Surace F., Russomanno A., Dalmonte M., Silva A., Fazio R., Iemini F.
We construct a class of period-n-tupling discrete time crystals based on Zn clock variables, for all the integers n. We consider two classes of systems where this phenomenology occurs: disordered models with short-range interactions and fully connected models. In the case of short-range models, we provide a complete classification of time-crystal phases for generic n. For the specific cases of n=3 and n=4, we study in detail the dynamics by means of exact diagonalization. In both cases, through an extensive analysis of the Floquet spectrum, we are able to fully map the phase diagram. In the case of infinite-range models, the mapping onto an effective bosonic Hamiltonian allows us to investigate the scaling to the thermodynamic limit. After a general discussion of the problem, we focus on n=3 and n=4, representative examples of the generic behavior. Remarkably, for n=4 we find clear evidence of a crystal-to-crystal transition between period n-tupling and period n/2-tupling.
Phase diagram and conformal string excitations of square ice using gauge invariant matrix product states
Tschirsich F., Montangero S., Dalmonte M.
We investigate the ground state phase diagram of square ice — a U(1) lattice gauge theory in two spatial dimensions — using gauge invariant tensor network techniques. By correlation function, Wilson loop, and entanglement diagnostics, we characterize its phases and the transitions between them, finding good agreement with previous studies. We study the entanglement properties of string excitations on top of the ground state, and provide direct evidence of the fact that the latter are described by a conformal field theory. Our results pave the way to the application of tensor network methods to confining, two-dimensional lattice gauge theories, to investigate their phase diagrams and low-lying excitations.
Nontopological parafermions in a one-dimensional fermionic model with even multiplet pairing
Mazza L., Iemini F., Dalmonte M., Mora C.
We discuss a one-dimensional fermionic model with a generalized ZN even multiplet pairing extending Kitaev Z2 chain. The system shares many features with models believed to host localized edge parafermions, the most prominent being a similar bosonized Hamiltonian and a ZN symmetry enforcing an N-fold degenerate ground state robust to certain disorders. Interestingly, we show that the system supports a pair of parafermions but they are nonlocal instead of being boundary operators. As a result, the degeneracy of the ground state is only partly topological and coexists with spontaneous symmetry breaking by a (two-particle) pairing field. Each symmetry-breaking sector is shown to possess a pair of Majorana edge modes encoding the topological twofold degeneracy. Surrounded by two band insulators, the model exhibits for N=4 the dual of an 8π fractional Josephson effect highlighting the presence of parafermions.
Long-range interactions from U (1) gauge fields via dimensional mismatch
Pinto Barros J., Dalmonte M., Trombettoni A.
We show how certain long-range models of interacting fermions in d + 1 dimensions are equivalent to gauge theories in D + 1 dimensions in which gauge fields are defined in a dimension (D) larger than the dimension (d) of the fermionic theory to be simulated. For d = 1 it is possible to obtain an exact mapping, providing an expression of the fermionic interaction potential in terms of half-integer powers of the Laplacian. An analogous mapping can be applied to the kinetic term of the bosonized theory. A diagrammatic representation of the theories obtained by dimensional mismatch is presented, and consequences and applications of the established duality are discussed. Finally, by using a perturbative approach, we address the canonical quantization of fermionic theories presenting non-locality in the interaction term to construct the Hamiltonians for the effective theories found by dimensional reduction. We conclude by showing that one can engineer the gauge fields and the dimensional mismatch in order to obtain long-range effective Hamiltonians with 1/r or 1/r 2 potentials as examples.
Entanglement Hamiltonians of lattice models via the Bisognano-Wichmann theorem
Giudici G., Mendes-Santos T., Calabrese P., Dalmonte M.
The modular (or entanglement) Hamiltonian correspondent to the half-space bipartition of a quantum state uniquely characterizes its entanglement properties. However, in the context of lattice models, its explicit form is analytically known only for the two spin chains and certain free theories in one dimension. In this work, we provide a thorough investigation of entanglement Hamiltonians in lattice models obtained via the Bisognano-Wichmann theorem, which provides an explicit functional form for the entanglement Hamiltonian itself in quantum field theory. Our study encompasses a variety of one- and two-dimensional models, supporting diverse quantum phases and critical points, and, most importantly, scanning several universality classes, including Ising, Potts, and Luttinger liquids. We carry out extensive numerical simulations based on the density matrix renormalization group method, exact diagonalization, and quantum Monte Carlo. In particular, we compare the exact entanglement properties and correlation functions to those obtained applying the Bisognano-Wichmann theorem on the lattice. We carry out this comparison on both the eigenvalues and eigenvectors of the entanglement Hamiltonian, and expectation values of correlation functions and order parameters. Our results evidence that as long as the low-energy description of the lattice model is well captured by a Lorentz-invariant quantum field theory, the Bisognano-Wichmann theorem provides a qualitatively and quantitatively accurate description of the lattice entanglement Hamiltonian. The resulting framework paves the way to direct studies of entanglement properties utilizing well-established statistical mechanics methods and experiments.

End of content

No more pages to load