All publications from Sandro Sorella
Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods
Motta M., Ceperley D.M., Chan G.K.L., Gomez J.A., Gull E., Guo S., Jiménez-Hoyos C.A., Lan T.N., Li J., Ma F., Millis A.J., Prokof’ev N.V., Ray U., Scuseria G.E., Sorella S., Stoudenmire E.M., Sun Q., Tupitsyn I.S., White S.R., Zgid D., Zhang S.
We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A variety of modern many-body methods are employed, with exhaustive cross-checks and validation. Approaches for reaching the continuous space limit and the thermodynamic limit are investigated, proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state of the art in many-body computation, and for the development of new methods. The ground-state energy per atom in the linear chain is accurately determined versus bond length, with a confidence bound given on all uncertainties.
Exact special twist method for quantum Monte Carlo simulations
Dagrada M., Karakuzu S., Vildosola V.L., Casula M., Sorella S.
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995)PRBMDO0163-182910.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
Toward accurate adsorption energetics on clay surfaces
Zen A., Roch L.M., Cox S.J., Hu X.L., Sorella S., Alfè D., Michaelides A.
Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem.
Correlation Effects in Scanning Tunneling Microscopy Images of Molecules Revealed by Quantum Monte Carlo
Barborini M., Sorella S., Rontani M., Corni S.
Scanning tunneling microscopy (STM) and spectroscopy probe the local density of states of single molecules electrically insulated from the substrate. The experimental images, although usually interpreted in terms of single-particle molecular orbitals, are associated with quasiparticle wave functions dressed by the whole electron-electron interaction. Here we propose an ab initio approach based on quantum Monte Carlo to calculate the quasiparticle wave functions of molecules. Through the comparison between Monte Carlo wave functions and their uncorrelated Hartree-Fock counterparts we visualize the electronic correlation embedded in the simulated STM images, highlighting the many-body features that might be observed.
Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo calculations
Busemeyer B., Dagrada M., Sorella S., Casula M., Wagner L.K.
Resolving the interplay between magnetic interactions and structural properties in strongly correlated materials through a quantitatively accurate approach has been a major challenge in condensed-matter physics. Here we apply highly accurate first-principles quantum Monte Carlo (QMC) techniques to obtain structural and magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where comparable, the computed properties are very close to the experimental values. Of potential ordered magnetic configurations, collinear spin configurations are the most energetically favorable over the explored pressure range. They become nearly degenerate in energy with bicollinear spin orderings at around 7 GPa, when the experimental critical temperature Tc is the highest. On the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become relatively higher in energy as the pressure increases. The behavior under pressure is explained by an analysis of the local charge compressibility and the orbital occupation as described by the QMC many-body wave function, which reveals how spin, charge, and orbital degrees of freedom are strongly coupled in this compound. This remarkable pressure evolution suggests that stripelike magnetic fluctuations may be responsible for the enhanced Tc in FeSe and that higher Tc is associated with nearness to a crossover between collinear and bicollinear ordering.
Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
Zen A., Sorella S., Gillan M.J., Michaelides A., Alfè D.
Diffusion Monte Carlo (DMC) simulations for fermions are becoming the standard for providing high-quality reference data in systems that are too large to be investigated via quantum chemical approaches. DMC with the fixed-node approximation relies on modifications of the Green's function to avoid singularities near the nodal surface of the trial wave function. Here we show that these modifications affect the DMC energies in a way that is not size consistent, resulting in large time-step errors. Building on the modifications of Umrigar et al. and DePasquale et al. we propose a simple Green's function modification that restores size consistency to large values of the time step, which substantially reduces time-step errors. This algorithm also yields remarkable speedups of up to two orders of magnitude in the calculation of molecule-molecule binding energies and crystal cohesive energies, thus extending the horizons of what is possible with DMC.
Assessing the orbital selective Mott transition with variational wave functions
Tocchio L.F., Arrigoni F., Sorella S., Becca F.
We study the Mott metal-insulator transition in the two-band Hubbard model with different hopping amplitudes t 1 and t 2 for the two orbitals on the two-dimensional square lattice by using non-magnetic variational wave functions, similarly to what has been considered in the limit of infinite dimensions by dynamical mean-field theory. We work out the phase diagram at half filling (i.e. two electrons per site) as a function of and the on-site Coulomb repulsion U, for two values of the Hund's coupling J = 0 and J/U = 0.1. Our results are in good agreement with previous dynamical mean-field theory calculations, demonstrating that the non-magnetic phase diagram is only slightly modified from infinite to two spatial dimensions. Three phases are present: a metallic one, for small values of U, where both orbitals are itinerant; a Mott insulator, for large values of U, where both orbitals are localized because of the Coulomb repulsion; and the so-called orbital-selective Mott insulator (OSMI), for small values of R and intermediate Us, where one orbital is localized while the other one is still itinerant. The effect of the Hund's coupling is two-fold: on one side, it favors the full Mott phase over the OSMI; on the other side, it stabilizes the OSMI at larger values of R.
Universal quantum criticality in the metal-insulator transition of two-dimensional interacting dirac electrons
Otsuka Y., Yunoki S., Sorella S.
The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
Hidden Mott transition and large- U superconductivity in the two-dimensional Hubbard model
Tocchio L., Becca F., Sorella S.
We consider the one-band Hubbard model on the square lattice by using variational and Green's function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BCS pairing and magnetic order. At half-filling, where the ground state is antiferromagnetically ordered for any value of the on-site interaction U, we can identify a hidden critical point UMott, above which a finite BCS pairing is stabilized in the wave function. The existence of this point is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater insulator (at small values of U), where magnetism induces a potential energy gain, and a Mott insulator (at large values of U), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence of UMott has crucial consequences when doping the system: We observe a tendency for phase separation into hole-rich and hole-poor regions only when doping the Slater insulator, while the system is uniform by doping the Mott insulator. Superconducting correlations are clearly observed above UMott, leading to the characteristic dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing above UMott shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
Sorella S., Devaux N., Dagrada M., Mazzola G., Casula M.
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wave function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.
Lanczos steps to improve variational wave functions
Becca F., Hu W.J., Iqbal Y., Parola A., Poilblanc D., Sorella S.
Gutzwiller-projected fermionic states can be efficiently implemented within quantum Monte Carlo calculations to define extremely accurate variational wave functions for Heisenberg models on frustrated two-dimensional lattices, not only for the ground state but also for low-energy excitations. The application of few Lanczos steps on top of these states further improves their accuracy, allowing calculations on large clusters. In addition, by computing both the energy and its variance, it is possible to obtain reliable estimations of exact results. Here, we report the cases of the frustrated Heisenberg models on square and Kagome lattices.
Finite-size scaling with modified boundary conditions
Sorella S.
An efficient scheme is introduced for a fast and smooth convergence to the thermodynamic limit of electronic properties obtained with finite-size calculations on correlated Hamiltonians. This is obtained by modifying the energy levels of the free electron part of the Hamiltonian in a way consistent with the corresponding one-particle density of states in the thermodynamic limit. After this modification, free electron ground state energies, exact in the thermodynamic limit, are obtained with finite-size calculations and for all the particular fillings that satisfy the so called "closed-shell condition." For those fillings the auxiliary field quantum Monte Carlo technique is particularly efficient and, by combining it with the present method, we provide strong numerical evidence that phase separation occurs in the low doping region and moderate Uâ‰4t regime of this model.
Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz
Dupuy N., Bouaouli S., Mauri F., Sorella S., Casula M.
We study the ionization energy, electron affinity, and the π → π- (1La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the 1La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral 1La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen A., Luo Y., Mazzola G., Guidoni L., Sorella S.
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Ab initio molecular dynamics with quantum Monte Carlo
Luo Y., Sorella S.
Distinct metallization and atomization transitions in dense liquid hydrogen
Mazzola G., Sorella S.
We perform molecular dynamics simulations driven by accurate quantum Monte Carlo forces on dense liquid hydrogen. There is a recent report of a complete atomization transition between a mixed molecular-atomic liquid and a completely dissociated fluid in an almost unaccessible pressure range [Nat. Commun. 5, 3487 (2014)]. Here, instead, we identify a different transition between the fully molecular liquid and the mixed-atomic fluid at ∼400GPa, i.e., in a much more interesting pressure range. We provide numerical evidence supporting the metallic behavior of this intermediate phase. Therefore, we predict that the metallization at finite temperature occurs in this partially dissociated molecular fluid, well before the complete atomization of the liquid. At high temperature this first-order transition becomes a crossover, in very good agreement with the experimental observation. Several systematic tests supporting the quality of our large scale calculations are also reported.
Electronic origin of the volume collapse in cerium
Devaux N., Casula M., Decremps F., Sorella S.
The cerium α-γ phase transition is characterized by means of a many-body Jastrow-correlated wave function, which minimizes the variational energy of the first-principles scalar-relativistic Hamiltonian, and includes correlation effects in a nonperturbative way. Our variational ansatz accurately reproduces the structural properties of the two phases, and proves that even at temperature T=0K the system undergoes a first-order transition, with ab initio parameters which are seamlessly connected to the ones measured by experiment at finite T. We show that the transition is related to a complex rearrangement of the electronic structure, with a key role played by the p-f hybridization. The underlying mechanism unveiled by this work can hold in many Ce-bearing compounds, and more generally in other f-electron systems.
Quantum magnets: Break it up
Becca F., Sorella S.
Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties
Luo Y., Zen A., Sorella S.
We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.
Quantum Monte Carlo study of the protonated water dimer
Dagrada M., Casula M., Saitta A.M., Sorella S., Mauri F.
We report an extensive theoretical study of the protonated water dimer H5O2+ (Zundel ion) by means of the highly correlated variational Monte Carlo and lattice regularized Monte Carlo approaches. This system represents the simplest model for proton transfer (PT), and a correct description of its properties is essential in order to understand the PT mechanism in more complex aqueous systems. Our Jastrow correlated AGP wave function ensures an accurate treatment of electron correlation. By exploiting the advantage of contracting the primitive basis set over atomic hybrid orbitals, we are able to limit dramatically the number of variational parameters with a systematic control on the numerical precision, a crucial ingredient in order to simulate larger systems. For both energetics and geometrical properties, our QMC results are found to be in excellent agreement with state-of-the-art coupled cluster CCSD(T) techniques. A comparison with density functional theory in the PBE approximation points to the crucial role of electron correlation for a correct description of the PT in the dimer. We prove that the QMC framework used in this work is able to resolve the tiny energy differences (∼0.3 kcal/mol) and structural variations involved in proton transfer reactions. Our approach combines these features and a favorable N 4 scaling with the number of particles which paves the way to the simulation of more realistic PT models. A test calculation on a larger protonated water cluster is carried out. The QMC approach used here represents a promising candidate to provide the first high-level ab initio description of PT in water. © 2014 American Chemical Society.

End of content

No more pages to load