All publications from Rosario Fazio
Thermodynamic uncertainty relations for systems with broken time reversal symmetry: The case of superconducting hybrid systems
Taddei F., Fazio R.
We derive bounds to the thermodynamic uncertainty relations in the linear-response regime for steady-state transport in two-terminal systems when time reversal symmetry is broken. We find that such bounds are different for charge and heat currents and depend on the details of the system, through the Onsager coefficients, and on the ratio between applied voltage and temperature difference. As a function of such a ratio, the bounds can take any positive values. The bounds are then calculated for a hybrid coherent superconducting system using the scattering approach, and the concrete case of an Andreev interferometer is explored. Interestingly, we find that the bound on the charge current is always smaller than 2 when the system operates as a heat engine, while the bound on the heat current is always larger than 2 when the system operates as a refrigerator.
Deep learning nonlocal and scalable energy functionals for quantum Ising models
Costa E., Fazio R., Pilati S.
Density functional theory (DFT) is routinely employed in material science and quantum chemistry to simulate weakly correlated electronic systems. Recently, deep learning (DL) techniques have been adopted to develop promising functionals for the strongly correlated regime. DFT can be applied to quantum spin models too, but functionals based on DL have not been developed yet. Here, we investigate DL-based DFTs for random quantum Ising chains, both with nearest-neighbor and up to next-nearest-neighbor couplings. Our neural functionals are trained and tested on data produced via the Jordan-Wigner transformation, exact diagonalization, and tensor-network methods. An economical gradient-descent optimization is used to find the ground-state properties of previously unseen Hamiltonian instances. Notably, our nonlocal functionals drastically improve upon the common local density approximations, and they are designed to be scalable, allowing us to simulate chain sizes much larger than those used for training. The prediction accuracy is analyzed, paying attention to the spatial correlations of the learned functionals and to the role of quantum criticality. Our findings indicate a suitable strategy to extend the reach of other computational methods with a controllable accuracy.
Quantum effects on the synchronization dynamics of the Kuramoto model
Delmonte A., Romito A., Santoro G.E., Fazio R.
The Kuramoto model serves as a paradigm for describing spontaneous synchronization in a system of classical interacting rotors. In this paper, we extend this model to the quantum domain by coupling quantum interacting rotors to external baths following the Caldeira-Leggett approach. Studying the mean-field model in the overdamped limit using Feynman-Vernon theory, we show how quantum mechanics modifies the phase diagram. Specifically, we demonstrate that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it. We examine the phase transition into the synchronized phase at various temperatures, revealing that classical results are recovered at high temperatures while a quantum phase transition occurs at zero temperature. Additionally, we derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters, and examine the differences between classical and quantum behavior.
Full counting statistics as probe of measurement-induced transitions in the quantum Ising chain
Tirrito E., Santini A., Fazio R., Collura M.
Non-equilibrium dynamics of many-body quantum systems under the effect of measurement protocols is attracting an increasing amount of attention. It has been recently revealed that measurements may induce different non-equilibrium regimes and an abrupt change in the scaling-law of the bipartite entanglement entropy. However, our understanding of how these regimes appear, how they affect the statistics of local quantities and, finally whether they survive in the thermodynamic limit, is much less established. Here we investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. In particular we show that local projective measurements induce a quantitative modification of the out-of-equilibrium probability distribution function of the local magnetization. Starting from a GHZ state, the relaxation of the paramagnetic and the ferromagnetic order is analysed. In particular we describe how the probability distributions associated to them show different behaviour depending on the measurement rate.
Diagrammatic method for many-body non-Markovian dynamics: Memory effects and entanglement transitions
Chiriacò G., Tsitsishvili M., Poletti D., Fazio R., Dalmonte M.
We study the quantum dynamics of a many-body system subject to coherent evolution and coupled to a non-Markovian bath. We propose a technique to unravel the non-Markovian dynamics in terms of quantum jumps, a connection that was so far only understood for single-body systems. We develop a systematic method to calculate the probability of a quantum trajectory and formulate it in a diagrammatic structure. We find that non-Markovianity renormalizes the probability of realizing a quantum trajectory and that memory effects can be interpreted as a perturbation on top of the Markovian dynamics. We show that the diagrammatic structure is akin to that of a Dyson equation and that the probability of the trajectories can be calculated analytically. We then apply our results to study the measurement-induced entanglement transition in random unitary circuits. We find that non-Markovianity does not significantly shift the transition but stabilizes the volume law phase of the entanglement by shielding it from transient strong dissipation.
Competition of Quasiparticles and Magnetization Noise in Hybrid Ferromagnetic Transmon Qubits
Ahmad H.G., Brosco V., Miano A., Di Palma L., Arzeo M., Satariano R., Ferraiuolo R., Lucignano P., Vettoliere A., Granata C., Parlato L., Ausanio G., Montemurro D., Pepe G.P., Fazio R., Tafuri F., Massarotti D.
The coexistence between ferromagnetic ordering and superconducting transport in tunnel ferromagnetic Josephson junctions (SFS JJs) accounts for a wide range of unconventional physical properties. The integration of both insulating ferromagnets or multi-layered insulator-ferromagnet barriers allows to combine ferromagnetic switching properties with peculiar low quasiparticle dissipation, which could enhance the capabilities of SFS JJs as active elements in quantum circuits. Here we show that split-transmon qubits based on tunnel ferromagnetic JJs realize an ideal playground to study noise fluctuations in ferromagnetic Josephson devices. By considering the transport properties of measured Al-based tunnel SFS JJs, we report on a theoretical study of the competition between intrinsic magnetization fluctuations in the barrier and quasiparticles dissipation, thus providing specific operation regimes to identify and disentangle the two noise sources, depending on the peculiar properties of the F layer and F/S interface.
A feasible path for the use of ferromagnetic josephson junctions in quantum circuits: The ferro-transmon
Massarotti D., Ahmad H.G., Satariano R., Ferraiuolo R., Di Palma L., Mastrovito P., Serpico G., Levochkina A., Caruso R., Miano A., Arzeo M., Ausanio G., Granata C., Lucignano P., Montemurro D., Parlato L., Vettoliere A., Fazio R., Mukhanov O., Pepe G.P., Tafuri F.
We discuss the capabilities of ferromagnetic (F) Josephson junctions (JJs) in a variety of layouts and configurations. The main goal is to demonstrate the potential of these hybrid JJs to disclose new physics and the possibility to integrate them in superconducting classical and quantum electronics for various applications. The feasible path towards the use of ferromagnetic Josephson junctions in quantum circuits starts from experiments demonstrating macroscopic quantum tunneling in NbN/GdN/NbN junctions with ferro-insulator barriers and with triplet components of the supercurrent, supported by a self-consistent electrodynamic characterization as a function of the barrier thickness. This has inspired further studies on tunnel ferromagnetic junctions with a different layout and promoted the first generation of ferromagnetic Al-based JJs, specifically Al/AlOx/Al/Py/Al. This layout takes advantage of the capability to integrate the ferromagnetic layer in the junction without affecting the quality of the superconducting electrodes and of the tunnel barrier. The high quality of the devices paves the way for the possible implementation of Al tunnel-ferromagnetic JJs in superconducting quantum circuits. These achievements have promoted the notion of a novel type of qubit incorporating ferromagnetic JJs. This qubit is based on a transmon design featuring a tunnel JJ in parallel with a ferromagnetic JJ inside a SQUID loop capacitively coupled to a superconducting readout resonator. The effect of an external RF field on the magnetic switching processes of ferromagnetic JJs has been also investigated.
Signatures of Dissipation Driven Quantum Phase Transition in Rabi Model
De Filippis G., De Candia A., Di Bello G., Perroni C.A., Cangemi L.M., Nocera A., Sassetti M., Fazio R., Cataudella V.
By using the worldline Monte Carlo technique, matrix product state, and a variational approach à la Feynman, we investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi model, where a two level system is coupled to a linear harmonic oscillator embedded in a viscous fluid. We show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by varying the coupling strength between the two level system and the oscillator. This is a nonperturbative result, occurring even for extremely low dissipation magnitude. By using state-of-the-art theoretical methods, we unveil the features of the relaxation towards the thermodynamic equilibrium, pointing out the signatures of quantum phase transition both in the time and frequency domains. We prove that, for low and moderate values of the dissipation, the quantum phase transition occurs in the deep strong coupling regime. We propose to realize this model by coupling a flux qubit and a damped LC oscillator.
Fluctuations and stability of a fast-driven Otto cycle
Gramajo A.L., Paladino E., Pekola J., Fazio R.
We investigate the stochastic dynamics of a thermal machine realized by a fast-driven Otto cycle. By employing a stochastic approach, we find that system coherences strongly affect fluctuations depending on the thermodynamic current. Specifically, we observe an increment in the system instabilities when considering the heat exchanged with the cold bath. On the contrary, the cycle precision improves when the system couples with the hot bath, where thermodynamic fluctuations reduce below the classical thermodynamic uncertainty relation bound. Violation of the classical bound holds even when a dephasing source couples with the system. We also find that coherence suppression not only restores the cycle cooling but also enhances the convergence of fluctuation relations by increasing the entropy production of the reversed process. An additional analysis unveiled that the stochastic sampling required to ensure good statistics increases for the cooling cycle while downsizes for the other protocols. Despite the simplicity of our model, our results provide further insight into thermodynamic relations at the stochastic level.
Crafting the dynamical structure of synchronization by harnessing bosonic multilevel cavity QED
Valencia-Tortora R.J., Kelly S.P., Donner T., Morigi G., Fazio R., Marino J.
Many-body cavity QED experiments are established platforms to tailor and control the collective responses of ensembles of atoms, interacting through one or more common photonic modes. The rich diversity of dynamical phases they can host calls for a unified framework. Here we commence this program by showing that a cavity QED simulator assembled from N-level bosonic atoms can reproduce and extend the possible dynamical responses of collective observables occurring after a quench. Specifically, by initializing the atoms in classical or quantum states, or by leveraging intralevels quantum correlations, we craft on demand the entire synchronization/desynchronization dynamical crossover of an exchange model for SU(N) spins. We quantitatively predict the onset of different dynamical responses by combining the Liouville-Arnold theorem on classical integrability with an ansatz for reducing the collective evolution to an effective few-body dynamics. Among them, we discover a synchronized chaotic phase induced by quantum correlations and associated to a first-order nonequilibrium transition in the Lyapunov exponent of collective atomic dynamics. Our outreach includes extensions to other spin-exchange quantum simulators and a universal conjecture for the dynamical reduction of nonintegrable all-to-all interacting systems.
First-order transitions in spin chains coupled to quantum baths
Perroni C.A., De Candia A., Cataudella V., Fazio R., De Filippis G.
We show that tailoring the dissipative environment allows us to change the features of continuous quantum phase transitions and even induce first-order transitions in ferromagnetic spin chains. In particular, using a numerically exact quantum Monte Carlo method for the paradigmatic Ising chain of one-half spins in a transverse magnetic field, we find that spin couplings to local quantum boson baths (in the Ohmic regime) can drive the transition from the second to the first order even for a low dissipation strength. Moreover, using a variational mean-field approach for the treatment of spin-spin and spin-boson interactions, we point out that phase discontinuities are ascribable to a dissipation-induced effective magnetic field which is intrinsically related to the bath quantum fluctuations and vanishes for classical baths. The effective field is able to switch the sign of the magnetization along the direction of spin-spin interactions. The results can be potentially tested in recent quantum simulators and are relevant for quantum sensing since the spin system could not only detect the properties of nonclassical baths, but also the effects of weak magnetic fields.
Erratum: Entanglement transitions from stochastic resetting of non-Hermitian quasiparticles (Phys. Rev. B (2022) 105 (L241114) DOI: 10.1103/PhysRevB.107.L241114)
Turkeshi X., Dalmonte M., Fazio R., Schirò M.
Our paper introduced a phenomenological quasiparticle picture describing monitored many-body systems. A central point of our work is that the system's non-Hermitian Hamiltonian (nHH) quasiparticles reveal insights into the measurement-induced phases. In particular, the quasiparticle picture explains the emergence of a logarithmic phase in noninteracting monitored fermions when the nHH gap is closed and an area-law phase when the nHH gap is open [a fact numerically observed in a variety of works (see, e.g., Ref. [1])] To qualitatively support our claims, we have introduced an archetypal model: the transverse field Ising chain under quantum jumps monitoring of the transverse magnetization. Here, the correlation matrix fully captures the dynamics by the system's Gaussianity. (Figure Presented). In conclusion, the new analysis confirms the qualitative description given by the quasiparticle picture for monitored fermionic systems in a wide range of parameters, provided finite-size effects are considered. We are grateful to A. Paviglianiti and A. Silva for pointing out a problem in our original numerical implementation.
A feasible path for the use of ferromagnetic Josephson junctions in quantum circuits: the ferro-transmon
Massarotti D., Ahmad H.G., Satariano R., Ferraiuolo R., Di Palma L., Mastrovito P., Serpico G., Levochkina A., Caruso R., Miano A., Arzeo M., Ausanio G., Granata C., Lucignano P., Montemurro D., Parlato L., Vettoliere A., Fazio R., Mukhanov O., Pepe G.P., Tafuri F.
We discuss the capabilities of ferromagnetic (F) Josephson junctions (JJs) in a variety of layouts and configurations. The main goal is to demonstrate the potential of these hybrid JJs to disclose new physics and the possibility to integrate them in superconducting classical and quantum electronics for various applications. The feasible path towards the use of ferromagnetic Josephson junctions in quantum circuits starts from experiments demonstrating macroscopic quantum tunneling in NbN/GdN/NbN junctions with ferro-insulator barriers and with triplet components of the supercurrent, supported by a self-consistent electrodynamic characterization as a function of the barrier thickness. This has inspired further studies on tunnel ferromagnetic junctions with a different layout and promoted the first generation of ferromagnetic Al-based JJs, specifically Al/AlOx/Al/Py/Al. This layout takes advantage of the capability to integrate the ferromagnetic layer in the junction without affecting the quality of the superconducting electrodes and of the tunnel barrier. The high quality of the devices paves the way for the possible implementation of Al tunnel-ferromagnetic JJs in superconducting quantum circuits. These achievements have promoted the notion of a novel type of qubit incorporating ferromagnetic JJs. This qubit is based on a transmon design featuring a tunnel JJ in parallel with a ferromagnetic JJ inside a SQUID loop capacitively coupled to a superconducting readout resonator. The effect of an external RF field on the magnetic switching processes of ferromagnetic JJs has been also investigated.
Geometric phases along quantum trajectories
Viotti L., Gramajo A.L., Villar P.I., Lombardo F.C., Fazio R.
A monitored quantum system undergoing a cyclic evolution of the parameters governing its Hamiltonian accumulates a geometric phase that depends on the quantum trajectory followed by the system on its evolution. The phase value will be determined both by the unitary dynamics and by the interaction of the system with the environment. Consequently, the geometric phase will acquire a stochastic character due to the occurrence of random quantum jumps. Here we study the distribution function of geometric phases in monitored quantum systems and discuss when/if different quantities, proposed to measure geometric phases in open quantum systems, are representative of the distribution. We also consider a monitored echo protocol and discuss in which cases the distribution of the interference pattern extracted in the experiment is linked to the geometric phase. Furthermore, we unveil, for the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle and show how this critical behavior can be observed in an echo protocol. For the same parameters, the density matrix does not show any singularity. We illustrate all our main results by considering a paradigmatic case, a spin-1/2 immersed in time-varying a magnetic field in the presence of an external environment. The major outcomes of our analysis are however quite general and do not depend, in their qualitative features, on the choice of the model studied.
Dissipative time crystals with long-range Lindbladians
Passarelli G., Lucignano P., Fazio R., Russomanno A.
Dissipative time crystals can appear in spin systems, when the Z2 symmetry of the Hamiltonian is broken by the environment, and the square of total spin operator S2 is conserved. In this paper, we relax the latter condition and show that time-translation-symmetry-breaking collective oscillations persist, in the thermodynamic limit, even in the absence of spin symmetry. We engineer an ad hoc Lindbladian using power-law-decaying spin operators and show that time-translation-symmetry breaking appears when the decay exponent obeys 0<η≤1. This model shows a surprisingly rich phase diagram, including the time-crystal phase as well as first-order, second-order, and continuous transitions of the fixed points. We study the phase diagram and the magnetization dynamics in the mean-field approximation. We prove that this approximation is quantitatively accurate, when 0<η<1 and the thermodynamic limit is taken, because the system does not develop sizable quantum fluctuations, if the Gaussian approximation is considered.
Deep-learning density functionals for gradient descent optimization
Costa E., Scriva G., Fazio R., Pilati S.
Machine-learned regression models represent a promising tool to implement accurate and computationally affordable energy-density functionals to solve quantum many-body problems via density functional theory. However, while they can easily be trained to accurately map ground-state density profiles to the corresponding energies, their functional derivatives often turn out to be too noisy, leading to instabilities in self-consistent iterations and in gradient-based searches of the ground-state density profile. We investigate how these instabilities occur when standard deep neural networks are adopted as regression models, and we show how to avoid them by using an ad hoc convolutional architecture featuring an interchannel averaging layer. The main testbed we consider is a realistic model for noninteracting atoms in optical speckle disorder. With the interchannel average, accurate and systematically improvable ground-state energies and density profiles are obtained via gradient-descent optimization, without instabilities nor violations of the variational principle.
Nonlinear dynamics of the dissipative anisotropic two-photon Dicke model
Li J., Fazio R., Chesi S.
We study the semiclassical limit of the anisotropic two-photon Dicke model with a dissipative bosonic field and describe its rich nonlinear dynamics. Besides normal and 'superradiant'-like phases, the presence of localized fixed points reflects the spectral collapse of the closed-system Hamiltonian. Through Hopf bifurcations of superradiant and normal fixed points, limit cycles are formed in certain regions of parameters. We also identify a pole-flip transition induced by anisotropy and a region of chaotic dynamics, which appears from a cascade of period-doubling bifurcations. In the chaotic region, collision and fragmentation of symmetric attractors take place. Throughout the phase diagram we find several examples of phase coexistence, leading to the segmentation of phase space into distinct basins of attraction.
Weak ergodicity breaking in Josephson-junction arrays
Russomanno A., Fava M., Fazio R.
We study the quantum dynamics of Josephson-junction arrays. We find isolated groups of low-entanglement eigenstates that persist even when the Josephson interaction is strong enough to destroy the overall organization of the spectrum in multiplets, and a perturbative description is no longer possible. These eigenstates lie in the inner part of the spectrum, far from the spectral edge, and provide a weak ergodicity breaking, reminiscent of the quantum scars. Due to the presence of these eigenstates, initializing with a charge-density-wave state, the system does not thermalize and the charge-density-wave order persists for long times. Considering global ergodicity probes, we find that the system tends toward more ergodicity for increasing system size: The parameter range where the bulk of the eigenstates look nonergodic shrinks for increasing system size. We study two geometries, a one-dimensional chain and a two-leg ladder. In the latter case, adding a magnetic flux makes the system more ergodic.
Collective effects on the performance and stability of quantum heat engines
Souza L.D.S., Manzano G., Fazio R., Iemini F.
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest in their study both from a fundamental perspective and in view of applications. One essential question is whether collective effects may help to carry enhancements over larger scales, when increasing the number of systems composing the working substance of the engine. Such enhancements may consider not only power and efficiency, that is, its performance, but, additionally, its constancy, that is, the stability of the engine with respect to unavoidable environmental fluctuations. We explore this issue by introducing a many-body quantum heat engine model composed by spin pairs working in continuous operation. We study how power, efficiency, and constancy scale with the number of spins composing the engine and introduce a well-defined macroscopic limit where analytical expressions are obtained. Our results predict power enhancements, in both finite-size and macroscopic cases, for a broad range of system parameters and temperatures, without compromising the engine efficiency, accompanied by coherence-enhanced constancy for finite sizes. We discuss these quantities in connection to thermodynamic uncertainty relations.
Entanglement transitions from stochastic resetting of non-Hermitian quasiparticles
Turkeshi X., Dalmonte M., Fazio R., Schirò M.
We put forward a phenomenological theory for entanglement dynamics in monitored quantum many-body systems with well-defined quasiparticles. Within this theory entanglement is carried by ballistically propagating non-Hermitian quasiparticles which are stochastically reset by the measurement protocol with a rate given by their finite inverse lifetime. We write down a renewal equation for the statistics of the entanglement entropy and show that, depending on the spectrum of quasiparticle decay rates, different entanglement scalings can arise and even sharp entanglement phase transitions. When applied to a quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area-law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point. We compare these predictions with exact numerical calculations on the same model and find an excellent agreement.

End of content

No more pages to load