All publications from Massimo Capone
Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers
Kropf C.M., Valli A., Franceschini P., Celardo G.L., Capone M., Giannetti C., Borgonovi F.
The possibility to exploit quantum coherence to strongly enhance the efficiency of charge transport in solid state devices working at ambient conditions would pave the way to disruptive technological applications. In this work, we tackle the problem of the quantum transport of photogenerated electronic excitations subject to dephasing and on-site Coulomb interactions. We show that the transport to a continuum of states representing metallic collectors can be optimized by exploiting the "superradiance" phenomena. We demonstrate that this is a coherent effect which is robust against dephasing and electron-electron interactions in a parameters range that is compatible with actual implementation in few-monolayer transition-metal-oxide (TMO) heterostructures.
Two-particle Fermi liquid parameters at the Mott transition: Vertex divergences, Landau parameters, and incoherent response in dynamical mean-field theory
Krien F., Van Loon E.G.C.P., Katsnelson M.I., Lichtenstein A.I., Capone M.
We consider the interaction-driven Mott transition at zero temperature from the viewpoint of microscopic Fermi liquid theory. To this end, we derive an exact expression for the Landau parameters within the dynamical mean-field theory (DMFT) approximation to the single-band Hubbard model. At the Mott transition, the symmetric and the antisymmetric Landau parameters diverge. The vanishing compressibility at the Mott transition directly implies the divergence of the forward-scattering amplitude in the charge sector, which connects the proximity of the Mott phase to a tendency toward phase separation. We verify the expected behavior of the Landau parameters in a DMFT application to the Hubbard model on the triangular lattice at finite temperature. Exact conservation laws and the Ward identity are crucial to capture vertex divergences related to the Mott transition. We furthermore generalize Leggett's formula for the static susceptibility of the Fermi liquid to the static fermion-boson response function. In the charge sector, the limits of small transferred momentum and frequency of this response function commute at the Mott transition.
Exciton Mott transition revisited
Guerci D., Capone M., Fabrizio M.
The dissociation of excitons into a liquid of holes and electrons in photoexcited semiconductors, despite being one of the first recognized examples of a Mott transition, still defies a complete understanding, especially regarding the nature of the transition, which is found to be continuous in some cases and discontinuous in others. Here we consider an idealized model of photoexcited semiconductors that can be mapped onto a spin-polarized half-filled Hubbard model, whose phase diagram reproduces most of the phenomenology of those systems and uncovers the key role of the exciton binding energy in determining the nature of the exciton Mott transition. We find indeed that the transition changes from discontinuous to continuous as the binding energy increases. Moreover, we uncover a rather anomalous electron-hole liquid phase next to the transition, which still sustains excitonic excitations despite being a degenerate Fermi liquid of heavy mass quasiparticles.
Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators
Isidori A., Berović M., Fanfarillo L., De'Medici L., Fabrizio M., Capone M.
Multiorbital Hubbard models host strongly correlated "Hund's metals" even for interactions much stronger than the bandwidth. We characterize this interaction-resilient metal as a mixed-valence state. In particular, it can be pictured as a bridge between two strongly correlated insulators: a high-spin Mott insulator and a charge-disproportionated insulator which is stabilized by a very large Hund's coupling. This picture is confirmed comparing models with negative and positive Hund's coupling for different fillings. Our results provide a characterization of the Hund's metal state and connect its presence with charge disproportionation, which has indeed been observed in chromates and proposed to play a role in iron-based superconductors.
Momentum-dependent relaxation dynamics of the doped repulsive Hubbard model
Sayyad S., Tsuji N., Vaezi A., Capone M., Eckstein M., Aoki H.
We study the dynamical behavior of doped electronic systems subject to a global ramp of the repulsive Hubbard interaction. We start with formulating a real-time generalization of the fluctuation-exchange approximation. Implementing this numerically, we investigate the weak-coupling regime of the Hubbard model both in the electron-doped and hole-doped regimes. The results show that both local and nonlocal (momentum-dependent) observables evolve toward a thermal state, although the temperature of the final state depends on the ramp duration and the band filling. We further reveal a momentum-dependent relaxation rate of the distribution function in doped systems and trace back its physical origin to the anisotropic self-energies in the momentum space.
Dynamical vertex approximation for the attractive Hubbard model
Del Re L., Capone M., Toschi A.
In this work, we adapt the formalism of the dynamical vertex approximation (DΓA), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive on-site interactions. We start by exploiting the ladder approximation of the DΓA scheme, in order to derive the corresponding equations for the nonlocal self-energy and vertex functions of the attractive Hubbard model. Second, we prove the validity of our derivation by showing that the results obtained in the particle-hole symmetric case fully preserve the exact mapping between the attractive and the repulsive models. It will be shown how this property can be related to the structure of the ladders, which makes our derivation applicable for any approximation scheme based on ladder diagrams. Finally, we apply our DΓA algorithm to the attractive Hubbard model in three dimensions, for different fillings and interaction values. Specifically, we focus on the parameters region in the proximity of the second-order transition to the superconducting and charge-density wave phases, respectively, and calculate (i) their phase-diagrams, (ii) their critical behavior, as well as (iii) the effects of the strong nonlocal correlations on the single-particle properties.
Theory of Chiral Edge State Lasing in a 2D Topological System
Seclı M., Capone M., Carusotto I.
We numerically simulate a Harper-Hofstadter model equipped with broadband optical gain, with the goal of extracting those general features of the lasing regime resulting from the chirality of the edge modes. We find ultraslow relaxation times well above threshold and, depending on the shape of the amplifying region, the opening of a convective instability region in which the competition between the two chiral edge modes emerges more clearly.
Selective insulators and anomalous responses in three-component fermionic gases with broken SU(3) symmetry
Del Re L., Capone M.
We study a three-component fermionic fluid in an optical lattice in a regime of intermediate to strong interactions allowing for optical processes connecting the different components, similar to those used to create artificial gauge fields. Using dynamical mean-field theory, we show that the combined effect of interactions and the external field induces a variety of anomalous phases in which different components of the fermionic fluid display qualitative differences, i.e., the physics is flavor selective. Remarkably, the different components can display huge differences in the correlation effects, measured by their effective masses and nonmonotonic behavior of their occupation number as a function of the chemical potential, signaling a sort of selective instability of the overall stable quantum fluid.
Emergent D6 symmetry in fully relaxed magic-angle twisted bilayer graphene
Angeli M., Mandelli D., Valli A., Amaricci A., Capone M., Tosatti E., Fabrizio M.
We present a tight-binding calculation of a twisted bilayer graphene at magic angle θ∼1.08, allowing for full, in- and out-of-plane, relaxation of the atomic positions. The resulting band structure displays, as usual, four narrow minibands around the neutrality point, well separated from all other bands after the lattice relaxation. A thorough analysis of the miniband Bloch functions reveals an emergent D6 symmetry, despite the lack of any manifest point-group symmetry in the relaxed lattice. The Bloch functions at the Γ point are degenerate in pairs, reflecting the so-called valley degeneracy. Moreover, each of them is invariant under C3z, i.e., transforming like a one-dimensional, in-plane symmetric irreducible representation of an "emergent" D6 group. Out of plane, the lower doublet is even under C2x, while the upper doublet is odd, which implies that at least eight Wannier orbitals, two s-like and two pz-like ones for each of the supercell sublattices AB and BA, are necessary but probably not sufficient to describe the four minibands. This unexpected one-electron complexity is likely to play an important role in the still unexplained metal-insulator-superconductor phenomenology of this system.
Enhanced performance of a quantum-dot-based nanomotor due to Coulomb interactions
Ludovico M.F., Capone M.
We study the relation between quantum pumping of charge and the work exchanged with the driving potentials in a strongly interacting ac-driven quantum dot. We work in the large-interaction limit and in the adiabatic pumping regime, and we develop a treatment that combines the time-dependent slave-boson approximation with linear response in the rate of change in the ac potentials. We find that the time evolution of the system can be described in terms of equilibrium solutions at every time. We analyze the effect of the electronic interactions on the performance of the dot when operating as a quantum motor. The main two effects of the interactions are a shift of the resonance and an enhancement of the efficiency with respect to a noninteracting dot. This is due to the appearance of additional ac parameters accounting for the interactions that increase the pumping of particles while decreasing the conductance.
Orbital-selective metals
Capone M.
Coexistence of metallic edge states and antiferromagnetic ordering in correlated topological insulators
Amaricci A., Valli A., Sangiovanni G., Trauzettel B., Capone M.
We investigate the emergence of antiferromagnetic ordering and its effect on the helical edge states in a quantum spin Hall insulator, in the presence of strong Coulomb interaction. Using dynamical mean-field theory, we show that the breakdown of lattice translational symmetry favors the formation of magnetic ordering with nontrivial spatial modulation. The onset of a nonuniform magnetization enables the coexistence of spin-ordered and topologically nontrivial states. An unambiguous signature of the persistence of the topological bulk property is the survival of bona fide edge states. We show that the penetration of the magnetic order is accompanied by the progressive reconstruction of gapless states in subperipheral layers, redefining the actual topological boundary within the system.
Correlation-driven Lifshitz transition and orbital order in a two-band Hubbard model
Grandi F., Amaricci A., Capone M., Fabrizio M.
We study by dynamical mean-field theory the ground state of a quarter-filled Hubbard model of two bands with different bandwidths. At half-filling, this model is known to display an orbital selective Mott transition, with the narrower band undergoing Mott localization while the wider one being still itinerant. At quarter-filling, the physical behavior is different and to some extent reversed. The interaction generates an effective crystal field splitting, absent in the Hamiltonian, that tends to empty the narrower band in favor of the wider one, which also become more correlated than the former at odds with the orbital selective paradigm. Upon increasing the interaction, the depletion of the narrower band can continue till it empties completely and the system undergoes a topological Lifshitz transition into a half-filled single-band metal that eventually turns insulating. Alternatively, when the two bandwidths are not too different, a first order Mott transition intervenes before the Lifshitz's one. The properties of the Mott insulator are significantly affected by the interplay between spin and orbital degrees of freedom.
Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes
Valli A., Amaricci A., Brosco V., Capone M.
We demonstrate that hexagonal graphene nanoflakes with zigzag edges display quantum interference (QI) patterns analogous to benzene molecular junctions. In contrast with graphene sheets, these nanoflakes also host magnetism. The cooperative effect of QI and magnetism enables spin-dependent quantum interference effects that result in a nearly complete spin polarization of the current and holds a huge potential for spintronic applications. We understand the origin of QI in terms of symmetry arguments, which show the robustness and generality of the effect. This also allows us to devise a concrete protocol for the electrostatic control of the spin polarization of the current by breaking the sublattice symmetry of graphene, by deposition on hexagonal boron nitride, paving the way to switchable spin filters. Such a system benefits from all of the extraordinary conduction properties of graphene, and at the same time, it does not require any external magnetic field to select the spin polarization, as magnetism emerges spontaneously at the edges of the nanoflake.
Pauli metallic ground state in Hubbard clusters with Rashba spin-orbit coupling
Brosco V., Guerci D., Capone M.
We study the "phase diagram" of a Hubbard plaquette with Rashba spin-orbit coupling. We show that the peculiar way in which Rashba coupling breaks the spin-rotational symmetry of the Hubbard model allows a mixing of singlet and triplet components in the ground state that slows down and changes the nature of the Mott transition and of the Mott insulating phases.
Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates
Cilento F., Manzoni G., Sterzi A., Peli S., Ronchi A., Crepaldi A., Boschini F., Cacho C., Chapman R., Springate E., Eisaki H., Greven M., Berciu M., Kemper A.F., Damascelli A., Capone M., Giannetti C., Parmigiani F.
Many puzzling properties of high-critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extremeultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the lowand high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates.
Electrodynamic properties of an artificial heterostructured superconducting cuprate
Perucchi A., Di Pietro P., Lupi S., Sopracase R., Tebano A., Giovannetti G., Petocchi F., Capone M., Di Castro D.
We perform infrared conductivity measurements on a series of CaCuO2/SrTiO3 heterostructures made by the insulating cuprate CaCuO2 (CCO) and the insulating perovskite SrTiO3 (STO). We estimate the carrier density of various heterostructures with different levels of hole doping from the integral of the optical conductivity, and we measure the corresponding degree of correlation by estimating the ratio between the Drude weight and the integral of the infrared spectrum. The analysis demonstrates a large degree of correlation, which increases as the doping is reduced. The experimental results can be reproduced by dynamical mean-field theory calculations, which strongly support the role of correlations in the CCO/STO heterostructures and their similarities with the most common cuprate superconductors. Our results suggest that cuprate superconductors can be looked at as natural superlattices, where the peculiar characteristics of the native interfaces between the conducting block (containing the CuO2 planes) and the charge reservoir block are mainly responsible for the electrodynamic properties of these systems.
Towards the Understanding of Superconductors and Correlated Materials out of Equilibrium: Mean Field Approaches
Capone M., Lupo C.
Lectures prepared for the XX Training Course in the Physics of Strongly Correlated Systems held in Vietri sul Mare (Sa), October 3–7, 2016.
Ultrafast orbital manipulation and Mott physics in multi-band correlated materials
Ronchi A., Franceschini P., Fanfarillo L., Homm P., Menghini M., Peli S., Ferrini G., Banfi F., Cilento F., Damascelli A., Parmigiani F., Locquet J.P., Fabrizio M., Capone M., Giannetti C.
Multiorbital correlated materials are often on the verge of multiple electronic phases (metallic, insulating, superconducting, charge and orbitally ordered), which can be explored and controlled by small changes of the external parameters. The use of ultrashort light pulses as a mean to transiently modify the band population is leading to fundamentally new results. In this paper we will review recent advances in the field and we will discuss the possibility of manipulating the orbital polarization in correlated multi-band solid state systems. This technique can provide new understanding of the ground state properties of many interesting classes of quantum materials and offers a new tool to induce transient emergent properties with no counterpart at equilibrium. We will address: the discovery of high-energy Mottness in superconducting copper oxides and its impact on our understanding of the cuprate phase diagram; the instability of the Mott insulating phase in photoexcited vanadium oxides; the manipulation of orbital-selective correlations in iron-based superconductors; the pumping of local electronic excitons and the consequent transient effective quasiparticle cooling in alkali-doped fullerides. Finally, we will discuss a novel route to manipulate the orbital polarization in a a k-resolved fashion.
Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO3
Schütz P., Di Sante D., Dudy L., Gabel J., Stübinger M., Kamp M., Huang Y., Capone M., Husanu M.A., Strocov V.N., Sangiovanni G., Sing M., Claessen R.
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO3 ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr2IrO4 opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.

End of content

No more pages to load