Theory of Robust Quantum Many-Body Scars in Long-Range Interacting Systems
Lerose A., Parolini T., Quantum many-body scars (QMBS) are exceptional energy eigenstates of quantum many-body systems associated with violations of thermalization for special nonequilibrium initial states. Their various systematic constructions require fine-tuning of local Hamiltonian parameters. In this work, we demonstrate that long-range interacting quantum spin systems generically host robust QMBS. We analyze spectral properties upon raising the power-law decay exponent α of spin-spin interactions from the solvable permutationally symmetric limit α=0. First, we numerically establish that, despite the fact that spectral signatures of chaos appear for infinitesimal α, the towers of α=0 energy eigenstates with large collective spin are smoothly deformed as α is increased and exhibit characteristic QMBS features. To elucidate the nature and fate of these states in larger systems, we introduce an analytical approach based on mapping the spin Hamiltonian onto a relativistic quantum rotor nonlinearly coupled to an extensive set of bosonic modes. We analytically solve for the eigenstates of this interacting impurity model by means of a novel polaron-type canonical transformation and show their self-consistent localization in large-spin sectors of the original Hamiltonian for 0<α
Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states
Hernández-Gómez S., Poggiali F., Cappellaro P., Cataliotti F.S., Energy exchange statistics between two bodies at different thermal equilibria obey the Jarzynski-Wójcik fluctuation theorem. The corresponding energy scale factor is the difference of the inverse temperatures associated to the bodies at equilibrium. In this work, we consider a dissipative quantum dynamics leading the quantum system towards a possibly nonthermal, asymptotic state. To generalize the Jarzynski-Wójcik theorem to nonthermal states, we identify a sufficient condition I for the existence of an energy scale factor η∗ that is unique, finite, and time independent, such that the characteristic function of the energy exchange distribution becomes identically equal to 1 for any time. This η∗ plays the role of the difference of inverse temperatures. We discuss the physical interpretation of the condition I, showing that it amounts to an almost complete memory loss of the initial state. The robustness of our results against quantifiable deviations from the validity of I is evaluated by experimental studies on a single nitrogen-vacancy center subjected to a sequence of laser pulses and dissipation.