Prime Suspects in a Quantum Ladder

In this Letter we set up a suggestive number theory interpretation of a quantum ladder system made of N coupled chains of spin 1/2. Using the hard-core boson representation and a leg-Hamiltonian made of a magnetic field and a hopping term, we can associate to the spins σa the prime numbers pa so that the chains become quantum registers for square-free integers. The rung Hamiltonian involves permutation terms between next-neighbor chains and a coprime repulsive interaction. The system has various phases; in particular, there is one whose ground state is a coherent superposition of the first N prime numbers. We also discuss the realization of such a model in terms of an open quantum system with a dissipative Lindblad dynamics.

Dynamical phase diagram of ultracold Josephson junctions

Xhani K., Galantucci L., Barenghi C.F., Roati G., We provide a complete study of the phase diagram characterising the distinct dynamical regimes emerging in a three-dimensional Josephson junction in an ultracold quantum gas. Considering trapped ultracold superfluids separated into two reservoirs by a barrier of variable height and width, we analyse the population imbalance dynamics following a variable initial population mismatch. We demonstrate that as the chemical potential difference is increased, the system transitions from Josephson plasma oscillations to either a dissipative (in the limit of low and narrow barriers) or a self-trapped regime (for large and wider barriers), with a crossover between the dissipative and the self-trapping regimes which we explore and characterize for the first time. This work, which extends beyond the validity of the standard two-mode model, connects the role of the barrier width, vortex rings and associated acoustic emission with different regimes of the superfluid dynamics across the junction, establishing a framework for its experimental observation, which is found to be within current experimental reach.

Quantum thermoelectric and heat transport in the overscreened Kondo regime: Exact conformal field theory results

Karki D.B., We develop a conformal field theory approach for investigation of the quantum charge, heat, and thermoelectric transport through a quantum impurity fine-tuned to a non-Fermi liquid regime. The non-Fermi-liquid operational mode is associated with the overscreened spin Kondo effect and controlled by the number of orbital channels. The universal low-temperature scaling and critical exponents for Seebeck and Peltier coefficients are investigated for the multichannel geometry. We discuss the universality of Lorenz ratio and power factor beyond the Fermi-liquid paradigm. Different methods of verifying our findings based on the recent experiments are proposed.

Polynomial scaling of the quantum approximate optimization algorithm for ground-state preparation of the fully connected p -spin ferromagnet in a transverse field

Wauters M.M., Mbeng G.B., We show that the quantum approximate optimization algorithm (QAOA) can construct, with polynomially scaling resources, the ground state of the fully connected p-spin Ising ferromagnet, a problem that notoriously poses severe difficulties to a vanilla quantum annealing (QA) approach due to the exponentially small gaps encountered at first-order phase transition for p≥3. For a target ground state at arbitrary transverse field, we find that an appropriate QAOA parameter initialization is necessary to achieve good performance of the algorithm when the number of variational parameters 2P is much smaller than the system size N because of the large number of suboptimal local minima. Instead, when P exceeds a critical value PN∗N, the structure of the parameter space simplifies, as all minima become degenerate. This allows achieving the ground state with perfect fidelity with a number of parameters scaling extensively with N and with resources scaling polynomially with N.

Back-reaction in canonical analogue black holes

Liberati S., Tricella G., We study the back-reaction associated with Hawking evaporation of an acoustic canonical analogue black hole in a Bose–Einstein condensate. We show that the emission of Hawking radiation induces a local back-reaction on the condensate, perturbing it in the near-horizon region, and a global back-reaction in the density distribution of the atoms. We discuss how these results produce useful insights into the process of black hole evaporation and its compatibility with a unitary evolution.

Time crystals in the driven transverse field Ising model under quasiperiodic modulation

Liang P., We investigate the transverse field Ising model subject to a two-step periodic driving protocol and quasiperiodic modulation of the Ising couplings. Analytical results on the phase boundaries associated with Majorana edge modes and numerical results on the localization of single-particle excitations are presented. The implication of a region with fully localized domain-wall-like excitations in the parameter space is eigenstate order and exact spectral pairing of Floquet eigenstates, based on which we conclude the existence of time crystals. We also examine various correlation functions of the time crystal phase numerically, in support of its existence.

Dirac electrons in the square-lattice Hubbard model with a d -wave pairing field: The chiral Heisenberg universality class revisited

Otsuka Y., Seki K., We numerically investigate the quantum criticality of the chiral Heisenberg universality class with the total number of fermion components N=8 in terms of the Gross-Neveu theory. Auxiliary-field quantum Monte Carlo simulations are performed for the square lattice Hubbard model in the presence of a d-wave pairing field, inducing Dirac cones in the single-particle spectrum. This property makes the model particularly interesting because it turns out to belong to the same universality class of the Hubbard model on the honeycomb lattice, which is the canonical model for graphene, despite the unit cells being apparently different (e.g., they contain one and two sites, respectively). We indeed show that the two phase transitions, expected to occur on the square and on the honeycomb lattices, have the same quantum criticality. We also argue that details of the models, i.e., the way of counting N and the anisotropy of the Dirac cones, do not change the critical exponents. The present estimates of the exponents for the N=8 chiral Heisenberg universality class are ν=1.05(5), ηφ=0.75(4), and ηψ=0.23(4), which are compared with the previous numerical estimations.

Complexity of mixed Gaussian states from Fisher information geometry

Di Giulio G., We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices.

Phase diagram of the two-dimensional Hubbard-Holstein model

Costa N.C., Seki K., Yunoki S., The electron–electron and electron–phonon interactions play an important role in correlated materials, being key features for spin, charge and pair correlations. Thus, here we investigate their effects in strongly correlated systems by performing unbiased quantum Monte Carlo simulations in the square lattice Hubbard-Holstein model at half-filling. We study the competition and interplay between antiferromagnetism (AFM) and charge-density wave (CDW), establishing its very rich phase diagram. In the region between AFM and CDW phases, we have found an enhancement of superconducting pairing correlations, favouring (nonlocal) s-wave pairs. Our study sheds light over past inconsistencies in the literature, in particular the emergence of CDW in the pure Holstein model case.

AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space

El-Neaj Y.A., Alpigiani C., Amairi-Pyka S., Araújo H., Balaž A., We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126.

Generalized measure of quantum synchronization

Jaseem N., Hajdušek M., Solanki P., Kwek L.C., We present a generalized information-Theoretic measure of synchronization in quantum systems. This measure is applicable to dynamics of anharmonic oscillators, few-level atoms, and coupled oscillator networks. Furthermore, the new measure allows us to discuss synchronization of disparate physical systems such as coupled hybrid quantum systems and coupled systems undergoing mutual synchronization that are also driven locally. In many cases of interest, we find a closed-form expression for the proposed measure.

Two-Dimensional Quantum-Link Lattice Quantum Electrodynamics at Finite Density

Felser T., Silvi P., We present an unconstrained tree-tensor-network approach to the study of lattice gauge theories in two spatial dimensions, showing how to perform numerical simulations of theories in the presence of fermionic matter and four-body magnetic terms, at zero and finite density, with periodic and open boundary conditions. We exploit the quantum-link representation of the gauge fields and demonstrate that a fermionic rishon representation of the quantum links allows us to efficiently handle the fermionic matter while finite densities are naturally enclosed in the tensor network description. We explicitly perform calculations for quantum electrodynamics in the spin-one quantum-link representation on lattice sizes of up to 16×16 sites, detecting and characterizing different quantum regimes. In particular, at finite density, we detect signatures of a phase separation as a function of the bare mass values at different filling densities. The presented approach can be extended straightforwardly to three spatial dimensions.

Domain wall melting in the spin- 12 XXZ spin chain: Emergent Luttinger liquid with a fractal quasiparticle charge

In spin chains with local unitary evolution preserving the magnetization Sz, the domain-wall state typically "melts."At large times, a nontrivial magnetization profile develops in an expanding region around the initial position of the domain wall. For nonintegrable dynamics, the melting is diffusive, with entropy production within a melted region of size t. In contrast, when the evolution is integrable, ballistic transport dominates and results in a melted region growing linearly in time, with no extensive entropy production: The spin chain remains locally in states of zero entropy at any time. Here we show that, for the integrable spin-1/2 XXZ chain, low-energy quantum fluctuations in the melted region give rise to an emergent Luttinger liquid which, remarkably, differs from the equilibrium one. The striking feature of this emergent Luttinger liquid is its quasiparticle charge (or Luttinger parameter K), which acquires a fractal dependence on the XXZ chain anisotropy parameter Δ.

Enhancement of charge instabilities in Hund's metals by breaking of rotational symmetry

Chatzieleftheriou M., Berović M., Villar Arribi P., We analyze multiorbital Hubbard models describing Hund's metals, focusing on the ubiquitous occurrence of a charge instability, signaled by a divergent/negative electronic compressibility, in a range of doping from the half-filled Mott insulator corresponding to the frontier between Hund's and normal metals. We show that the breaking of rotational invariance favors this instability: both spin anisotropy in the interaction and crystal-field splitting among the orbitals make the instability zone extend to larger dopings, making it relevant for real materials like iron-based superconductors. These observations help us build a coherent picture of the occurrence and extent of this instability. We trace it back to the partial freezing of the local degrees of freedom in the Hund's metal, which reduces the allowed local configurations and thus the quasiparticle itinerancy. The abruptness of the unfreezing happening at the Hund's metal frontier can be directly connected to a rapid change in the electronic kinetic energy and thus to the enhancement and divergence of the compressibility.

Boson-exchange parquet solver for dual fermions

Krien F., Valli A., Chalupa P., We present and implement a parquet approximation within the dual-fermion formalism based on a partial bosonization of the dual vertex function which substantially reduces the computational cost of the calculation. The method relies on splitting the vertex exactly into single-boson exchange contributions and a residual four-fermion vertex, which physically embody, respectively, long- and short-range spatial correlations. After recasting the parquet equations in terms of the residual vertex, these are solved using the truncated-unity method of Eckhardt et al. [Phys. Rev. B 101, 155104 (2020)2469-995010.1103/PhysRevB.101.155104], which allows for a rapid convergence with the number of form factors in different regimes. While our numerical treatment of the parquet equations can be restricted to only a few Matsubara frequencies, reminiscent of Astretsov et al. [Phys. Rev. B 101, 075109 (2020)2469-995010.1103/PhysRevB.101.075109], the one- and two-particle spectral information is fully retained. In applications to the two-dimensional Hubbard model the method agrees quantitatively with a stochastic summation of diagrams over a wide range of parameters.

Finite temperature off-diagonal long-range order for interacting bosons

Colcelli A., Defenu N., Characterizing the scaling with the total particle number (N) of the largest eigenvalue of the one-body density matrix (++0) provides information on the occurrence of the off-diagonal long-range order (ODLRO) according to the Penrose-Onsager criterion. Setting ++0Gê+NC0, then C0=1 corresponds in ODLRO. The intermediate case, 0

Mixed-State Entanglement from Local Randomized Measurements

Elben A., Kueng R., Huang H.Y.(., Van Bijnen R., Kokail C., We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].

Symmetry resolved entanglement in integrable field theories via form factor bootstrap

Horváth D.X., We consider the form factor bootstrap approach of integrable field theories to derive matrix elements of composite branch-point twist fields associated with symmetry resolved entanglement entropies. The bootstrap equations are determined in an intuitive way and their solution is presented for the massive Ising field theory and for the genuinely interacting sinh-Gordon model, both possessing a ℤ2 symmetry. The solutions are carefully cross-checked by performing various limits and by the application of the ∆-theorem. The issue of symmetry resolution for discrete symmetries is also discussed. We show that entanglement equipartition is generically expected and we identify the first subleading term (in the UV cutoff) breaking it. We also present the complete computation of the symmetry resolved von Neumann entropy for an interval in the ground state of the paramagnetic phase of the Ising model. In particular, we compute the universal functions entering in the charged and symmetry resolved entanglement.

Spin-1/2 Ising–Heisenberg Cairo pentagonal model in the presence of an external magnetic field: effect of Landé g-factors

Arian Zad H., Abstract: In the present paper, a study of the magnetic properties of a spin-1/2 Ising–Heisenberg Cairo pentagonal structure is presented. The model has been investigated in [F.C. Rodrigues, S.M. de Souza, O. Rojas, Ann. Phys. 379, 1 (2017)] in the absence of external magnetic field. Here, we consider the effects of an external tunable magnetic field. By using the transfer matrix approach, we investigate the magnetic ground-state phase transition, the low-temperature magnetization process, and how the magnetic field influences the various thermodynamic parameters such as entropy, internal energy and specific heat. It is shown that the model exhibits intermediate magnetization plateaux accompanied by a double-peak in the specific heat curve versus temperature. The position of each magnetization jump is in accordance with the merging and/or separation of the two peaks in the specific heat curve. Considering different g-factors for the nodal Ising spins and spin dimers also results in arising different intermediate plateaux and to remarkable alterations of the thermodynamic properties of the model. Graphical abstract: [Figure not available: see fulltext.].

The nature of the chemical bond in the dicarbon molecule

Genovese C., The molecular dissociation energy has often been explained and discussed in terms of singlet bonds, formed by bounded pairs of valence electrons. In this work, we use a highly correlated resonating valence bond ansatz, providing a consistent paradigm for the chemical bond, where spin fluctuations are shown to play a crucial role. Spin fluctuations are known to be important in magnetic systems and correspond to the zero point motion of the spin waves emerging from a magnetic broken symmetry state. Within our ansatz, a satisfactory description of the carbon dimer is determined by the magnetic interaction of two carbon atoms with antiferromagnetically ordered S = 1 magnetic moments. This is a first step that, thanks to the highly scalable and efficient quantum Monte Carlo techniques, may open the door for understanding challenging complex systems containing atoms with large spins (e.g., transition metals).